Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?

Identifieur interne : 001496 ( Main/Exploration ); précédent : 001495; suivant : 001497

Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?

Auteurs : Joanna A. Horemans ; Hanne Van Gaelen ; Dirk Raes ; Terenzio Zenone ; Reinhart Ceulemans

Source :

RBID : pubmed:28603557

Abstract

We calibrated and evaluated the agricultural model AquaCrop for the simulation of water use and yield of a short-rotation coppice (SRC) plantation with poplar (Populus) in East Flanders (Belgium) during the second and the third rotation (first 2 years only). Differences in crop development and growth during the course of the rotations were taken into account during the model calibration. Overall, the AquaCrop model showed good performance for the daily simulation of soil water content (R2 of 0.57-0.85), of green canopy cover (R2 > 0.87), of evapotranspiration (ET; R2 > 0.76), and of potential yield. The simulated, total yearly water use of the SRC ranged between 55% and 85% of the water use of a reference grass ecosystem calculated under the same environmental conditions. Crop transpiration was between 67% and 93% of total ET, with lower percentages in the first than in the second year of each rotation. The observed (dry mass) yield ranged from 6.61 to 14.76 Mg ha-1 yr-1. A yield gap of around 30% was observed between the second and the third rotation, as well as between simulated and observed yield during the third rotation. This could possibly be explained by the expansion of the understory (weed) layer; the relative cover of understory weeds was 22% in the third year of the third rotation. The agricultural AquaCrop model simulated total water use and potential yield of the operational SRC in a reliable way. As the plantation was extensively managed, potential effects of irrigation and/or fertilization on ET and on yield were not considered in this study.

DOI: 10.1111/gcbb.12422
PubMed: 28603557
PubMed Central: PMC5439494


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?</title>
<author>
<name sortKey="Horemans, Joanna A" sort="Horemans, Joanna A" uniqKey="Horemans J" first="Joanna A" last="Horemans">Joanna A. Horemans</name>
<affiliation>
<nlm:affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Van Gaelen, Hanne" sort="Van Gaelen, Hanne" uniqKey="Van Gaelen H" first="Hanne" last="Van Gaelen">Hanne Van Gaelen</name>
<affiliation>
<nlm:affiliation>Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Raes, Dirk" sort="Raes, Dirk" uniqKey="Raes D" first="Dirk" last="Raes">Dirk Raes</name>
<affiliation>
<nlm:affiliation>Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zenone, Terenzio" sort="Zenone, Terenzio" uniqKey="Zenone T" first="Terenzio" last="Zenone">Terenzio Zenone</name>
<affiliation>
<nlm:affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<nlm:affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28603557</idno>
<idno type="pmid">28603557</idno>
<idno type="doi">10.1111/gcbb.12422</idno>
<idno type="pmc">PMC5439494</idno>
<idno type="wicri:Area/Main/Corpus">001292</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001292</idno>
<idno type="wicri:Area/Main/Curation">001292</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001292</idno>
<idno type="wicri:Area/Main/Exploration">001292</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?</title>
<author>
<name sortKey="Horemans, Joanna A" sort="Horemans, Joanna A" uniqKey="Horemans J" first="Joanna A" last="Horemans">Joanna A. Horemans</name>
<affiliation>
<nlm:affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Van Gaelen, Hanne" sort="Van Gaelen, Hanne" uniqKey="Van Gaelen H" first="Hanne" last="Van Gaelen">Hanne Van Gaelen</name>
<affiliation>
<nlm:affiliation>Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Raes, Dirk" sort="Raes, Dirk" uniqKey="Raes D" first="Dirk" last="Raes">Dirk Raes</name>
<affiliation>
<nlm:affiliation>Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zenone, Terenzio" sort="Zenone, Terenzio" uniqKey="Zenone T" first="Terenzio" last="Zenone">Terenzio Zenone</name>
<affiliation>
<nlm:affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<nlm:affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Global change biology. Bioenergy</title>
<idno type="ISSN">1757-1693</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We calibrated and evaluated the agricultural model AquaCrop for the simulation of water use and yield of a short-rotation coppice (SRC) plantation with poplar (
<i>Populus</i>
) in East Flanders (Belgium) during the second and the third rotation (first 2 years only). Differences in crop development and growth during the course of the rotations were taken into account during the model calibration. Overall, the AquaCrop model showed good performance for the daily simulation of soil water content (
<i>R</i>
<sup>2</sup>
of 0.57-0.85), of green canopy cover (
<i>R</i>
<sup>2</sup>
 > 0.87), of evapotranspiration (ET;
<i>R</i>
<sup>2</sup>
 > 0.76), and of potential yield. The simulated, total yearly water use of the SRC ranged between 55% and 85% of the water use of a reference grass ecosystem calculated under the same environmental conditions. Crop transpiration was between 67% and 93% of total ET, with lower percentages in the first than in the second year of each rotation. The observed (dry mass) yield ranged from 6.61 to 14.76 Mg ha
<sup>-1</sup>
 yr
<sup>-1</sup>
. A yield gap of around 30% was observed between the second and the third rotation, as well as between simulated and observed yield during the third rotation. This could possibly be explained by the expansion of the understory (weed) layer; the relative cover of understory weeds was 22% in the third year of the third rotation. The agricultural AquaCrop model simulated total water use and potential yield of the operational SRC in a reliable way. As the plantation was extensively managed, potential effects of irrigation and/or fertilization on ET and on yield were not considered in this study.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28603557</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1757-1693</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Global change biology. Bioenergy</Title>
<ISOAbbreviation>Glob Change Biol Bioenergy</ISOAbbreviation>
</Journal>
<ArticleTitle>Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?</ArticleTitle>
<Pagination>
<MedlinePgn>1151-1164</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gcbb.12422</ELocationID>
<Abstract>
<AbstractText>We calibrated and evaluated the agricultural model AquaCrop for the simulation of water use and yield of a short-rotation coppice (SRC) plantation with poplar (
<i>Populus</i>
) in East Flanders (Belgium) during the second and the third rotation (first 2 years only). Differences in crop development and growth during the course of the rotations were taken into account during the model calibration. Overall, the AquaCrop model showed good performance for the daily simulation of soil water content (
<i>R</i>
<sup>2</sup>
of 0.57-0.85), of green canopy cover (
<i>R</i>
<sup>2</sup>
 > 0.87), of evapotranspiration (ET;
<i>R</i>
<sup>2</sup>
 > 0.76), and of potential yield. The simulated, total yearly water use of the SRC ranged between 55% and 85% of the water use of a reference grass ecosystem calculated under the same environmental conditions. Crop transpiration was between 67% and 93% of total ET, with lower percentages in the first than in the second year of each rotation. The observed (dry mass) yield ranged from 6.61 to 14.76 Mg ha
<sup>-1</sup>
 yr
<sup>-1</sup>
. A yield gap of around 30% was observed between the second and the third rotation, as well as between simulated and observed yield during the third rotation. This could possibly be explained by the expansion of the understory (weed) layer; the relative cover of understory weeds was 22% in the third year of the third rotation. The agricultural AquaCrop model simulated total water use and potential yield of the operational SRC in a reliable way. As the plantation was extensively managed, potential effects of irrigation and/or fertilization on ET and on yield were not considered in this study.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Horemans</LastName>
<ForeName>Joanna A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">0000-0001-6593-7329</Identifier>
<AffiliationInfo>
<Affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Gaelen</LastName>
<ForeName>Hanne</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raes</LastName>
<ForeName>Dirk</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Earth and Environmental ScienceK.U.Leuven UniversityCelestijnenlaan 200EB-3001LeuvenBelgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zenone</LastName>
<ForeName>Terenzio</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ceulemans</LastName>
<ForeName>Reinhart</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of BiologyCentre of Excellence PLECOUniversity of AntwerpUniversiteitsplein 1B-2610WilrijkBelgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glob Change Biol Bioenergy</MedlineTA>
<NlmUniqueID>101517159</NlmUniqueID>
<ISSNLinking>1757-1693</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">POPFULL</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">bioenergy</Keyword>
<Keyword MajorTopicYN="N">harvestable biomass prediction</Keyword>
<Keyword MajorTopicYN="N">soil water content</Keyword>
<Keyword MajorTopicYN="N">yield gap</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28603557</ArticleId>
<ArticleId IdType="doi">10.1111/gcbb.12422</ArticleId>
<ArticleId IdType="pii">GCBB12422</ArticleId>
<ArticleId IdType="pmc">PMC5439494</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Ecol Appl. 2007 Apr;17(3):675-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Jul;99(11):4832-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Jul;19(8):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Jul;25(7):873-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Mar;20(5_6):383-392</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Soil. 2013;373(1-2):269-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25834288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(2):358-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2008 Sep;18(6):1351-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18767615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Change Biol Bioenergy. 2017 Feb;9(2):370-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28239421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Change Biol Bioenergy. 2017 Feb;9(2):299-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28261329</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<name sortKey="Horemans, Joanna A" sort="Horemans, Joanna A" uniqKey="Horemans J" first="Joanna A" last="Horemans">Joanna A. Horemans</name>
<name sortKey="Raes, Dirk" sort="Raes, Dirk" uniqKey="Raes D" first="Dirk" last="Raes">Dirk Raes</name>
<name sortKey="Van Gaelen, Hanne" sort="Van Gaelen, Hanne" uniqKey="Van Gaelen H" first="Hanne" last="Van Gaelen">Hanne Van Gaelen</name>
<name sortKey="Zenone, Terenzio" sort="Zenone, Terenzio" uniqKey="Zenone T" first="Terenzio" last="Zenone">Terenzio Zenone</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001496 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001496 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28603557
   |texte=   Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28603557" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020